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Contact Structure with Basic Potentials
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This paper defines basic potentials for contact structure. Contact manifolds that admit
a basic potential are shown to have an additional foliated structure of co-dimension 1.
The properties of this new foliation, and its relation to the characteristic vector field,
are explored.
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1. INTRODUCTION

The terms contact structure and contact manifolds are used by authors to
refer to a variety of different, but closely related, structures all of which, in one
way or another, play a fundamental role in mathematical physics. In its widest
sense, contact structure embraces a number of more specialised sub-geometries,
and also some closely related structures that may be regarded as alternative gen-
eralisations of them. In many modelling problems, this broadest definition of
contact structure is too general. Models can often be formulated more naturally
and conveniently on contact manifolds of more specialised type. One such model
is defined by a global 1-form α of maximal rank, called the contact 1-form. In
fact, this more specialised structure turns up so frequently that some older authors
seem unaware of the existence of any other. For them, this special type is contact
structure.

It is true that contact structure no longer holds pride of place in analytical
mechanics. It is now known that time-dependent Hamiltonian mechanics is more
appropriately formulated in terms of co-symplectic geometry (Cantrijn et al.,
1992; de León and Rodrigues, 1989). This is a (2n + 1)-dimensional manifold M

1 Centre for Theoretical Physics, University of the Witwatersrand, Private Bag 3, WITS 2050, South
Africa.

2 Department of Mathematics (Pure and Applied), Rhodes University, P.O. Box 94, Grahamstown
6140, South Africa.

3 To whom correspondence should be addressed at Centre for Theoretical Physics, University of the
Witwatersrand, Private Bag 3, WITS 2050, South Africa; e-mail: frescuraf@staff.wits.ac.za.

35
0020-7748/05/0100-0035/0 C© 2005 Springer Science+Business Media, Inc.



36 Frescura and Lubczonok

equipped with a closed 2-form ω of maximal rank, together with a closed 1-form α

such that, at each point x ∈ M,α ∧ ωn �= 0. Comparing the definitions, it is seen
that there is a sense in which co-symplectic manifolds are opposite to the contact
manifolds (Albert, 1989). They also differ in another very important way: while
contact manifolds are Jacobi in nature, co-symplectic ones are Poisson (Dazord
et al., 1991; de León et al., 1997; Ibort et al., 1997). Nevertheless, contact and
contact-like manifolds play an important role in a variety of fields other than
mechanics. And, despite of their overthrow from priviledged position in analytical
mechanics by co-symplectic structure, they continue to be important in that field
also (Abraham and Marsden, 1978; Arnold, 1978; Godbillon, 1969). Their study
thus continues to be of significance.

In this paper, we investigate some properties of a particular type of contact
1-form that does not appear to have been considered before. This is one in which
its exterior derivative, the two form dα, admits a basic potential. “Basic” here
refers to the fact that the contact form α endows the manifold with a foliated
structure of dimension 1. The existence of a basic potential endows the manifold
with a second foliated structure, this time of co-dimension 1, which we explore.

In Section 2, we state the definition of contact structure we use in this work.
This is necessary because of the wide variety of definitions, not all equivalent,
found in the literature. It is not our intention to champion this definition. We
have simply found it a useful starting point for our investigations. We then briefly
review some of its most important consequences, and also add some non-standard
definitions of our own which we use in the proofs of our results. In Section 3, we
introduce the concept of basic potentials for contact structures, and deduce some
of their properties. A special case, which we call basic potentials of Liouville
type, is also briefly considered. Finally, in Section 4, we deduce some properties
of the second foliated structure on the contact manifold introduced by the basic
potentials.

2. CONTACT STRUCTURE

Not all authors are agreed on the definition of contact structure, or on the
terminology they use. Blair, for example, acknowledges two definitions, which
he calls respectively contact structure (in the wider sense) and contact structure
(in the restricted sense) (Blair, 1976). Abraham and Marsden also acknowledge
two definitions, and call the manifolds they define respectively contact manifolds
and exact contact manifolds (Abraham and Marsden, 1978). Their exact contact
manifold has a structure that coincides precisely with what Blair calls a contact
structure in the restricted sense, but their contact manifold is somewhat less gen-
eral than what Blair calls a manifold with a contact structure in the wider sense.
Arnold adopts yet another definition in terms of “a smooth field of tangent hy-
perplanes satifying a non-degeneracy condition” (Arnold, 1978), while Liberman
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and Marle offer a complex of contact structures of differing degrees of generality
which overlap in good measure with some of those mentioned above, but using
completely different terminology (Liberman and Marle, 1987). It is not our object
in this paper to compare and contrast these different defintions, nor to champion
any one of them. Rather, we have chosen to cut this intricate Gordian knot by
simply adopting a definition which is convenient for our work, and which we will
now state.

The definition of contact structure that we will use in this paper is the one
which Blair calls contact structure (in the restricted sense), and which Liberman
and Marle call Pfaffian contact structure. Our reasons for this are twofold. First,
this type of contact structure is the simplest to define, and with which to work.
Second, Gray has shown that, for orientable manifolds, Blair’s contact structure
in the wider sense is equivalent to his contact structure in the restricted sense
(Gray, 1959). In this sense therefore, it almost (but not quite) captures the essence
of contact structure in its most general definition. Besides, for a large number of
authors, “contact structure” means precisely contact structure in Blair’s restricted
sense. Popular vote thus appears to be on its side.

This type of contact structure is defined as follows. Let M be a smooth
differentiable manifold of odd dimension 2n + 1, with n > 0. A contact structure
on M is then a global differential 1-form α with the property that

� = α ∧ dαn �= 0 (2.1)

everywhere on M. The exponent denotes the nth exterior power. The 1-form α

is called the contact form. Note that � is a non-zero form of degree (2n + 1) on
M, and so is a volume form. The manifold M is thus necessarily orientable. The
classical theorem of Darboux asserts that, given any point x ∈ M , there exists a
chart {U, ϕ} on M with coordinate functions {z, xi, pi}, i = 1, . . . , n, such that α

takes the canonical form

α = dz + pidxi (2.2)

The 1-form α defines at each point of M a 2n-dimensional hyperplane Dx in
TxM . The set of all these hyperplanes is a subbundle D of TM and is called the
contact distribution. Since, according to (2.1), dα �= 0, this distribution is not
integrable. Blair comments that condition (2.1) means that “loosely speaking, D
is as far from being integrable as possible.” The 2-form ω = dα is of rank 2n,
and is also everywhere non-zero on M. It is thus a kind of “vortex field” and
defines at each point x in M a 1-dimensional subspace Cx of TxM . Trivially, this
1-dimensional distribution on M is integrable, because it is 1-dimensional and/or
because dω = 0. M is thus a foliation with leaves of dimension 1. It is easy to
show that the distribution C, called the characteristic distribution, is transverse to
D, and so equips TxM at each point x ∈ M with a natural direct sum structure. The
transversality of C and D means that we can use the contact form α to “measure”
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vectors in C. Choosing at each point a vector of unit “length” defines an unique
global vector field ξ on M, called the characteristic vector field of M. This vector
field is thus defined by

iξα = 1, iξω = 0 (2.3)

The contact structure is said to be regular if ξ is a regular vector field on M. Note
furthermore that ω, restricted to D, is symplectic. So, D is a symplectic vector
bundle with base M. As a foliation, therefore, M is transversally symplectic.

Besides these well known objects and structures, we introduce also a bilinear
form B defined by

B = α ⊗ α + ω (2.4)

B is non-degenerate, but has no definite symmetry. It is a metric on C, and
symplectic on D. Because it is non-degenerate, we can use it to define raising
and lowering operators � and �. Its lack of symmetry mean that, strictly, we should
distinguish left and right versions of these operators, but its simple properties on
the subbundles C and D mean that these operators are easily related and we can
dispose of one of the two sets. We therefore define � as follows. For arbitrary
vectors X ∈ T M and given A, put

�A(X) = B(A,X) (2.5)

Put differently, B is nothing but the vector bundle isomorphism

X �→ iXω + (iXα) α

Also, define � = �−1. It is easy to show that ξ = �α, and we will use these two
symbols interchangeably, depending on which is more transparent in the context.

3. BASIC POTENTIALS

We now investigate some special properties of contact manifolds in which
the 2-form ω admits a potential which is basic. Basic and semi-basic forms are
discussed in detail in Liberman and Marle in the context of foliations defined by
surjective submersions (Liberman and Marle, 1987), but the concepts are more
general and can be transferred unchanged into the theory of general foliations. Of
course, ω by definition has a potential, namely α. However α is not a basic form.
Because basic forms are simpler than non-basic ones, it is desirable to investigate
the implications of the existence of a basic replacement for α as a potential for ω.

Suppose ω has a basic potential. That is, there is on M a 1-form β such that
ω = dβ, with properties iξβ = 0 and Lξβ = 0. Here, ξ is the characteristic vector
field of the Pfaffian structure. In a Darboux chart for α, with coordinate functions
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{z, xi, pi}, i = 1, . . . , n, we have

α = dz + pidxi, ω = dpi ∧ dxi, ξ = ∂

∂z

and

β = βi(x, p)dxi + β̃i(x, p)dpi

where the coefficients βi and β̃i are functions of the variables {x1, . . .,
xn, p1, . . . , pn} alone, and do not involve the variable z. By definition, α is
everywhere non-zero, and it is obvious from these coordinate characterisations
that

θ = α − β (3.1)

is also everywhere non-zero. It is also closed, since dθ = dα − dβ = ω − ω = 0.
The 1-form θ thus defines a foliation {Ex} of co-dimension 1 on M.

The following identities follow easily from the above definitions:

�β�β = 0, �β�ω = β, �β�α = 0, �β�θ = 0 (3.2)

L�βα = β, L�ββ = β, L�βω = ω, L�βθ = 0 (3.3)

�θ�β = 0, �θ�ω = −β, �θ�α = 1 (3.4)

L�θα = −β, L�θβ = −β, L�θω = −ω (3.5)

[�α, �β] = 0, [�α, �θ ] = 0, [�β, �θ ] = 0 (3.6)

Relations (3.2) to (3.5) show that the vector field �β is tangent to the foliation
{Ex}, and that �α is transverse to it.

Denote the flows of the vector fields �α, �β and �θ respectively by {φt }, {ψt }
and {χt }. Relations (3.6) then show that

φt = ψt ◦ χt = χt ◦ ψt (3.7)

Further, �θ is B-perpendicular to the leaves of {Ex} while �β is tangent to them.
The flow of the vector field �β thus preserves the leaves of {Ex}.

Now, let E be a leaf of {Ex}. Denote by βE and ωE the forms induced on E
by β and ω respectively. Then, from (3.3)

L�ββE = βE

L�βωE = ωE

The 2-form ωE on E is symplectic and so can be used to define a raising operator
�S on E. This operator has the property

�β = �SβE
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LIOUVILLE-TYPE BASIC POTENTIALS:

We say that β is a basic potential of Liouville type if the zero set of β,

Sβ = {u ∈ M : βu = 0}
is an (n + 1)-dimensional submanifold, and if at each point u ∈ Sβ there is a
Darboux coordinate chart for β with coordinates (z, xi, pi) in which

β = pi dxi

that is, β has rank 2n. In this chart, Sβ is the manifold pi = 0, and �β = pi ∂/∂pi .
Thus Sβ is a maximal isotropic submanifold for ω. The field �α is tangent to Sβ

and so induces a flow on Sβ . This flow preserves the leaves of the foliation of the
closed non-zero form θ restricted to Sβ .

We shall discuss the dynamics of �α on the submanifold Sβ in the next
section. But first we establish the following result. Since �α is the characteristic
field, we have, in these coordinates,

�α = c
∂

∂z

where c is a function of (z, xi, pi). But by (3.6)

[�α, �β] = 0

so that

L�β c = 0

This means that c is homogeneous of degree zero in the pi , and since it is smooth,
must be independent of pi . The vector field �α is therefore uniquely determined
near the submanifold Sβ by its values on Sβ . If the manifold M and the fundamental
form α are (real) analytic, then �α is completely determined in all M by its values
on Sβ .

4. STRUCTURE OF THE FOLIATION {EX}
Consider now the structure of the foliation {Ex}. Our discussion is modelled

on that in Hector and Hirsch (1983), pp. 152–157. In this section, we assume that
�α, �β and �θ are complete vector fields on M.

There are then only three possibilities for {Ex}:
(a) θ = df , in which case {Ex} is a (locally trivial) fibration over R,
(b) The group �θ of periods of θ is cyclic and {Ex} is a locally trivial

fibration over S1,
(c) �θ is dense in R and {Ex} is minimal, that is, all its leaves are dense in

M.
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We are thus led to the following proposition.

Proposition 1. If M is compact then {Ex} is minimal.

Proof: The restriction ωF of ω to any leaf F of {Ex} defines a symplectic form
on F which is exact, since dαF = ωF . Hence F is not compact. This precludes
options (a) and (b) listed above, so {Ex} must be minimal. �

Consider now the flow {φt } of the vector field �α for the cases (a) and (b)
listed above.

Proposition 2. Case (a): {φt } has no periodic orbits and the action of {φt } on
the leaves of {Ex} is simply transitive.
Case (b): The flow induced on the basis S1 is transitive.

Proof: Case (a): Suppose φt (Ex) = Ex for some t. Then the flow induced on the
base space R has a periodic orbit and must thus have a stationary point, say s in
R. Thus the leaf F which projects onto s is stationary, that is, for all t ∈ R

φt (F ) = F

But this this is impossible since �α is transversal to F, (�α�θ �= 0). The flow
induced on the basis R is therefore transitive and so the flow {φt } acts simply
transitively on the leaves {Ex}.

Case (b): Proved similarly. �

Finally we note that if we take a regular covering

π : M̃ → M

such that θ̃ = π ∗ θ is exact, then

θ̃ = df

Further, M̃ is naturally equipped with the pullbacks α̃, β̃, and ω̃ which have the
properties θ̃ = α̃ − β̃ and B̃ = α̃ ⊗ α̃ + ω̃. On M̃ we therefore have case (a) listed
above. The orbits of �α̃ are thus regular coverings of the orbits of �α.
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